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Bayesian Linear Models are very useful in many fields!

1. Uncertainty Estimation in NNs (through linearisation)

2. Climate Prediction, Economics, Geology, Computational Biology

3. Bandits / RL

Problem: Posterior inference and hyperparameter selection is intractable with 
millions of observations and millions of parameters due to cubic scaling.

Solution: We cast inference and hyperparameter selection as a sequence of 
quadratic optimisation problems. We can solve these relatively easily for high 
dimensional problems with roughly linear scaling.
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• Given a neural network  parameterised by f : ℝd′￼ → ℝm θ ∈ ℝd

• We estimate uncertainty in  as uncertainty in the tangent linear model around MAP f(x) w̄

h(θ, x) = f(w̄, x) + ∇w f(w̄, x)(θ − w̄), θ ∼ 𝒩(0, A−1)

• For a Gaussian likelihood (i.e regression), the linear model’s posterior is Gaussian.

• Approximate the predictive distribution of the NN as 

  𝒩( f(w̄, x), ϕ(x)Σϕ(x)T)

where     and  a posterior covariance over ϕ(x) = ∇w f(w̄, x) Σ θ

• We can generalise this to non-Gaussian likelihoods (i.e. classification) by ‘Gaussianising’ with 
the Laplace approximation 



Linearised NNs work well

Baselines: 
• MAP

• Diagonal Laplace

• MC Dropout (Gal 2016)

• Deep Ensembles 

(Lakshminarayanan 2017)

• SWAG (Maddox 2019) 

Model:  
ResNet-18 with 11M weights

Inference:  
Lin Laplace Subnetwork  
(Daxberger et. al. 2021)

“Bayesian Deep Learning via Subnetwork Inference”

Corrupted CIFAR10 (Ovadia 2019)
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yi = ϕ(xi)θ + ηi

yi ∈ ℝm

ϕ(xi) ∈ ℝm×d
θ ∈ ℝd

i ∈ {1,...,n}

θ ∼ 𝒩(0, A−1)
ηi ∼ 𝒩(0, B−1

i )

Φ = [ϕ(x0)T, . . . , ϕ(xn)T]T ∈ ℝnm×d

Y = [yT
0 , . . . , yT

n ]T ∈ ℝnm

B = Bi ⊗ In ∈ ℝnm×nm

•  Number of parameters is large     

•  Observation space is large     

d > 1e6
n ⋅ m > 1e6



Inference in Bayesian Linear Models



Inference in Bayesian Linear Models

We want to:

1. Find the posterior distribution over parameters .

2. Tune the L2 regularisation strength .

θ
A



Inference in Bayesian Linear Models

We want to:

1. Find the posterior distribution over parameters .

2. Tune the L2 regularisation strength .

θ
A

Loss landscape   is quadratic with curvature  ℒ(θ) =
1
2

∥Y − Φθ∥2
B + ∥θ∥2

A H = ΦTBΦ + A



Inference in Bayesian Linear Models

We want to:

1. Find the posterior distribution over parameters .

2. Tune the L2 regularisation strength .

θ
A

Loss landscape   is quadratic with curvature  ℒ(θ) =
1
2

∥Y − Φθ∥2
B + ∥θ∥2

A H = ΦTBΦ + A

  both tasks can be performed in closed form:→



Inference in Bayesian Linear Models

We want to:

1. Find the posterior distribution over parameters .

2. Tune the L2 regularisation strength .

θ
A

Loss landscape   is quadratic with curvature  ℒ(θ) =
1
2

∥Y − Φθ∥2
B + ∥θ∥2

A H = ΦTBΦ + A

  both tasks can be performed in closed form:→

1.  Posterior is  𝒩(θ̄, H−1), θ̄ = H−1ΦTBY



Inference in Bayesian Linear Models

We want to:

1. Find the posterior distribution over parameters .

2. Tune the L2 regularisation strength .

θ
A

Loss landscape   is quadratic with curvature  ℒ(θ) =
1
2

∥Y − Φθ∥2
B + ∥θ∥2

A H = ΦTBΦ + A

  both tasks can be performed in closed form:→

1.  Posterior is  𝒩(θ̄, H−1), θ̄ = H−1ΦTBY

2.  Model evidence can be used to tune hyperparameters, ℳ(A) = ℒ(θ̄) −
1
2

logdetH



Inference in Bayesian Linear Models

We want to:

1. Find the posterior distribution over parameters .

2. Tune the L2 regularisation strength .

θ
A

Loss landscape   is quadratic with curvature  ℒ(θ) =
1
2

∥Y − Φθ∥2
B + ∥θ∥2

A H = ΦTBΦ + A

  both tasks can be performed in closed form:→

1.  Posterior is  𝒩(θ̄, H−1), θ̄ = H−1ΦTBY

2.  Model evidence can be used to tune hyperparameters, ℳ(A) = ℒ(θ̄) −
1
2

logdetH

𝒪(d3)



Inference in Bayesian Linear Models

We want to:

1. Find the posterior distribution over parameters .

2. Tune the L2 regularisation strength .

θ
A

Loss landscape   is quadratic with curvature  ℒ(θ) =
1
2

∥Y − Φθ∥2
B + ∥θ∥2

A H = ΦTBΦ + A

  both tasks can be performed in closed form:→

1.  Posterior is  𝒩(θ̄, H−1), θ̄ = H−1ΦTBY

2.  Model evidence can be used to tune hyperparameters, ℳ(A) = ℒ(θ̄) −
1
2

logdetH

𝒪(d3)
𝒪(d3)



Inference in Bayesian Linear Models

We want to:

1. Find the posterior distribution over parameters .

2. Tune the L2 regularisation strength .

θ
A

Loss landscape   is quadratic with curvature  ℒ(θ) =
1
2

∥Y − Φθ∥2
B + ∥θ∥2

A H = ΦTBΦ + A

  both tasks can be performed in closed form:→

1.  Posterior is  𝒩(θ̄, H−1), θ̄ = H−1ΦTBY

2.  Model evidence can be used to tune hyperparameters, ℳ(A) = ℒ(θ̄) −
1
2

logdetH

𝒪(d3)
𝒪(d3)

4.5TB (resnet18)
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Idea 1: Sample from the posterior with stochastic optimisation

z* ∼ 𝒩(0, H−1) if z* = argminz L(z)

L(z) =
n

∑
i=1

∥ϵi − ϕ(xi)z∥2
Bi

1

+ ∥z − θ0∥2
A

2

ϵi ∼ 𝒩(0, B−1
i )

θ0 ∼ 𝒩(0, A−1)

1. Noise-fit term.


• Depends on each observation’s feature expansion so it needs to be minibatched.


• Very large variance when estimated stochastically. 

2. Regularisation term. 


•We can compute its gradient in closed form.
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16x reduction in batch size!
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Stability of estimator: 1 sample is enough 

ResNet-18 ( ) on CIFAR-100 ( )d = 11M nm = 5M



Demonstration: Scalable Uncertainty Estimation in NNs

ResNet-18 ( ) on CIFAR-100 ( )d = 11M nm = 5M
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