Sampling-based Inference for Large Linear Models, with Application to Linearised Laplace

Cambridge NeurIPS Meetup, Dec. 8 2023 Shreyas Padhy

Bayesian Linear Models are very useful in many fields!

- 1. Uncertainty Estimation in NNs (through linearisation)
- 2. Climate Prediction, Economics, Geology, Computational Biology
- 3. Bandits / RL

Bayesian Linear Models are very useful in many fields!

- 1. Uncertainty Estimation in NNs (through linearisation)
- 2. Climate Prediction, Economics, Geology, Computational Biology
- 3. Bandits / RL

millions of observations and millions of parameters due to cubic scaling.

Problem: Posterior inference and **hyperparameter selection** is intractable with

Bayesian Linear Models are very useful in many fields!

- 1. Uncertainty Estimation in NNs (through linearisation)
- 2. Climate Prediction, Economics, Geology, Computational Biology
- 3. Bandits / RL

millions of observations and millions of parameters due to cubic scaling.

Solution: We cast inference and hyperparameter selection as a sequence of quadratic optimisation problems. We can solve these relatively easily for high dimensional problems with *roughly* linear scaling.

Problem: Posterior inference and **hyperparameter selection** is intractable with

• Given a neural network $f \colon \mathbb{R}^{d'} \to \mathbb{R}^m$ parameterised by $\theta \in \mathbb{R}^d$

- Given a neural network $f \colon \mathbb{R}^{d'} \to \mathbb{R}^m$ parameterised by $\theta \in \mathbb{R}^d$
- We estimate uncertainty in f(x) as uncertainty in the tangent **linear** model around MAP \bar{w}

$$h(\theta, x) = f(\bar{w}, x) + \nabla_w f(\bar{w}, x)$$

 $(\bar{w}, x)(\theta - \bar{w}), \qquad \theta \sim \mathcal{N}(0, A^{-1})$

- Given a neural network $f : \mathbb{R}^{d'} \to \mathbb{R}^m$ parameterised by $\theta \in \mathbb{R}^d$
- We estimate uncertainty in f(x) as uncertainty in the tangent **linear** model around MAP \overline{W}

$$h(\theta, x) = f(\bar{w}, x) + \nabla_w f(\bar{w}, x)(\theta - \bar{w}), \qquad \theta \sim \mathcal{N}(0, A^{-1})$$

- For a Gaussian likelihood (i.e regression), the linear model's posterior is Gaussian.
- Approximate the predictive distribution of the NN as

$$\mathcal{N}(f(\bar{w},$$

where
$$\phi(x) = \nabla_w f(\bar{w}, x)$$

- x), $\phi(x)\Sigma\phi(x)^T$
- and Σ a posterior covariance over θ

- Given a neural network $f : \mathbb{R}^{d'} \to \mathbb{R}^m$ parameterised by $\theta \in \mathbb{R}^d$
- We estimate uncertainty in f(x) as uncertainty in the tangent **linear** model around MAP \overline{W}

$$h(\theta, x) = f(\bar{w}, x) + \nabla_w f(\bar{w}, x)(\theta - \bar{w}), \qquad \theta \sim \mathcal{N}(0, A^{-1})$$

- For a Gaussian likelihood (i.e regression), the linear model's posterior is Gaussian.
- Approximate the predictive distribution of the NN as

$$\mathcal{N}(f(\bar{w},$$

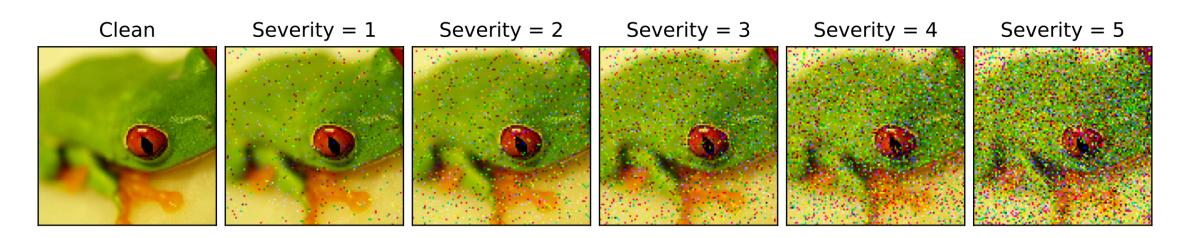
where
$$\phi(x) = \nabla_w f(\bar{w}, x)$$

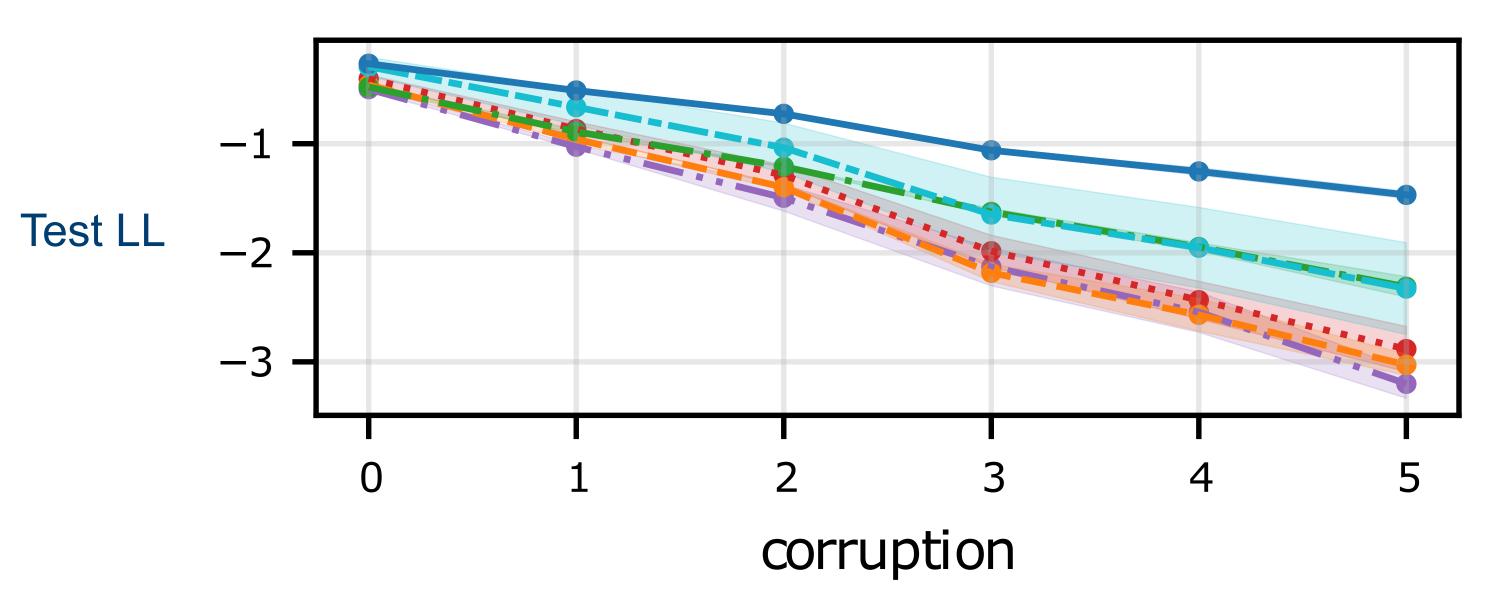
• We can generalise this to non-Gaussian likelihoods (i.e. classification) by 'Gaussianising' with the **Laplace** approximation

- x), $\phi(x)\Sigma\phi(x)^T$)
- and Σ a posterior covariance over θ

Linearised NNs work well

Corrupted CIFAR10 (Ovadia 2019)





Model: ResNet-18 with **11M** weights

Inference: Lin Laplace Subnetwork (Daxberger et. al. 2021)

"Bayesian Deep Learning via Subnetwork Inference"

Baselines:

- MAP
- Diagonal Laplace
- MC Dropout (Gal 2016)
- Deep Ensembles (Lakshminarayanan 2017)
- SWAG (Maddox 2019)

 $y_i = \phi(x_i)\theta + \eta_i$

 $y_i = \phi(x_i)\theta + \eta_i$

 $y_i \in \mathbb{R}^m$ $\theta \in \mathbb{R}^d$ $\phi(x_i) \in \mathbb{R}^{m \times d}$ $i \in \{1, ..., n\}$

 $y_i = \phi(x_i)\theta + \eta_i$

 $y_i \in \mathbb{R}^m$ $\theta \in \mathbb{R}^d$ $\phi(x_i) \in \mathbb{R}^{m \times d}$ $i \in \{1, ..., n\}$

 $\theta \sim \mathcal{N}(0, A^{-1})$ $\eta_i \sim \mathcal{N}(0, B_i^{-1})$

 $y_i = \phi(x_i)\theta + \eta_i$

 $y_i \in \mathbb{R}^m$ $\theta \in \mathbb{R}^d$ $\phi(x_i) \in \mathbb{R}^{m \times d}$ $i \in \{1,...,n\}$

 $\theta \sim \mathcal{N}(0, A^{-1})$ $\eta_i \sim \mathcal{N}(0, B_i^{-1})$

$Y = [y_0^T, \dots, y_n^T]^T \in \mathbb{R}^{nm}$

 $y_i = \phi(x_i)\theta + \eta_i$

 $y_i \in \mathbb{R}^m$ $\theta \in \mathbb{R}^d$ $\phi(x_i) \in \mathbb{R}^{m \times d}$ $i \in \{1,...,n\}$

 $\theta \sim \mathcal{N}(0, A^{-1})$ $\eta_i \sim \mathcal{N}(0, B_i^{-1})$

$Y = [y_0^T, \dots, y_n^T]^T \in \mathbb{R}^{nm}$ $\Phi = [\phi(x_0)^T, \dots, \phi(x_n)^T]^T \in \mathbb{R}^{nm \times d}$

 $y_i = \phi(x_i)\theta + \eta_i$

 $y_i \in \mathbb{R}^m$ $\theta \in \mathbb{R}^d$ $\phi(x_i) \in \mathbb{R}^{m \times d}$ $i \in \{1, ..., n\}$

 $\theta \sim \mathcal{N}(0, A^{-1})$ $\eta_i \sim \mathcal{N}(0, B_i^{-1})$

$Y = [y_0^T, \dots, y_n^T]^T \in \mathbb{R}^{nm}$

 $\Phi = [\phi(x_0)^T, \dots, \phi(x_n)^T]^T \in \mathbb{R}^{nm \times d}$

$B = B_i \otimes I_n \in \mathbb{R}^{nm \times nm}$

 $y_i = \phi(x_i)\theta + \eta_i$

 $y_i \in \mathbb{R}^m$ $\theta \in \mathbb{R}^d$ $\phi(x_i) \in \mathbb{R}^{m \times d}$ $i \in \{1,...,n\}$

 $\theta \sim \mathcal{N}(0, A^{-1})$ $\eta_i \sim \mathcal{N}(0, B_i^{-1})$

d > 1*e*6 Number of parameters is large d > 1e6Observation space is large $n \cdot m > 1e6$

 $Y = [y_0^T, \dots, y_n^T]^T \in \mathbb{R}^{nm}$

 $\Phi = [\phi(x_0)^T, \dots, \phi(x_n)^T]^T \in \mathbb{R}^{nm \times d}$

 $B = B_i \otimes I_n \in \mathbb{R}^{nm \times nm}$

We want to:

- **1**. Find the posterior distribution over parameters θ .
- **2**. Tune the L2 regularisation strength A.

We want to:

- **1.** Find the posterior distribution over parameters θ .
- 2. Tune the L2 regularisation strength A.

Loss landscape $\mathscr{L}(\theta) = \frac{1}{2} \|Y - \Phi\theta\|_B^2 + \|\theta\|_A^2$ is quadratic with curvature $H = \Phi^T B \Phi + A$

We want to:

- **1.** Find the posterior distribution over parameters θ .
- 2. Tune the L2 regularisation strength A.

 \rightarrow both tasks can be performed in closed form:

Loss landscape $\mathscr{L}(\theta) = \frac{1}{2} \|Y - \Phi\theta\|_B^2 + \|\theta\|_A^2$ is quadratic with curvature $H = \Phi^T B \Phi + A$

We want to:

- **1**. Find the posterior distribution over parameters θ .
- 2. Tune the L2 regularisation strength A.

Loss landscape $\mathscr{L}(\theta) = \frac{1}{2} \|Y - \Phi\theta\|_B^2 + \|\theta\|_A^2$ is quadratic with curvature $H = \Phi^T B \Phi + A$ \rightarrow both tasks can be performed in closed form:

1. Posterior is $\mathcal{N}(\bar{\theta}, H^{-1}), \quad \bar{\theta} = H^{-1}\Phi^T B Y$

We want to:

- **1**. Find the posterior distribution over parameters θ .
- 2. Tune the L2 regularisation strength A.

Loss landscape $\mathscr{L}(\theta) = \frac{1}{2} \|Y - \Phi\theta\|_B^2 + \|\theta\|_A^2$ is quadratic with curvature $H = \Phi^T B \Phi + A$ \rightarrow both tasks can be performed in closed form:

1. Posterior is $\mathcal{N}(\bar{\theta}, H^{-1}), \quad \bar{\theta} = H^{-1}\Phi^T B Y$

2. Model evidence can be used to tune hyperparameters, $\mathcal{M}(A) = \mathcal{L}(\bar{\theta}) - \frac{1}{2} \log \det H$

We want to:

- **1.** Find the posterior distribution over parameters θ .
- 2. Tune the L2 regularisation strength A.

Loss landscape $\mathscr{L}(\theta) = \frac{1}{2} \|Y - \Phi\theta\|_B^2 + \|\theta\|_A^2$ is quadratic with curvature $H = \Phi^T B \Phi + A$ \rightarrow both tasks can be performed in closed form: 1. Posterior is $\mathcal{N}(\bar{\theta}, H^{-1}), \quad \bar{\theta} = H^{-1} \Phi^T B Y$

2. Model evidence can be used to tune hyperparameters, $\mathcal{M}(A) = \mathcal{L}(\bar{\theta}) - \frac{1}{2} \log \det H$

We want to:

- **1.** Find the posterior distribution over parameters θ .
- 2. Tune the L2 regularisation strength A.

Loss landscape $\mathscr{L}(\theta) = \frac{1}{2} \|Y - \Phi\theta\|_B^2 + \|\theta\|_A^2$ is quadratic with curvature $H = \Phi^T B \Phi + A$ \rightarrow both tasks can be performed in closed form: **1.** Posterior is $\mathcal{N}(\bar{\theta}, H^{-1}), \quad \bar{\theta} = H^{-1}\Phi^T BY$

 $\mathcal{O}(d^3)$ 2. Model evidence can be used to tune hyperparameters, $\mathcal{M}(A) = \mathcal{L}(\bar{\theta}) - \frac{1}{2}\log\det H$

We want to:

- **1.** Find the posterior distribution over parameters θ .
- **2.** Tune the L2 regularisation strength A.

 \rightarrow both tasks can be performed in closed form: **1.** Posterior is $\mathcal{N}(\bar{\theta}, H^{-1}), \quad \bar{\theta} = H^{-1}\Phi^T BY$

 $\mathcal{O}(d^3)$ 2. Model evidence can be used to tune hyperparameters, $\mathcal{M}(A) = \mathcal{L}(\bar{\theta}) - \frac{1}{2}\log\det H$

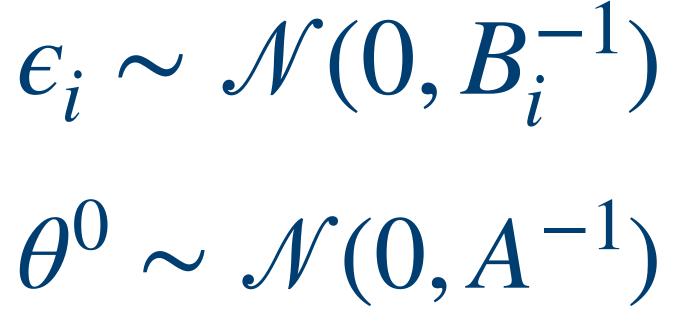
(resnet18) 4.5TB Loss landscape $\mathscr{L}(\theta) = \frac{1}{2} \|Y - \Phi\theta\|_B^2 + \|\theta\|_A^2$ is quadratic with curvature $H = \Phi^T B \Phi + A$

Idea 1: Sample from the posterior with stochastic optimisation

 $z^* \sim \mathcal{N}(0, H^{-1})$ if $z^* = \operatorname{argmin}_z L(z)$

Idea 1: Sample from the posterior with stochastic optimisation

 $z^* \sim \mathcal{N}(0, H^{-1})$ if $z^* = \operatorname{argmin}_z L(z)$ $L(z) = \sum \|\epsilon_i - \phi(x_i)z\|_{B_i}^2 + \|z - \theta^0\|_A^2$ i=1



Idea 1: Sample from the posterior with stochastic optimisation

$$z^* \sim \mathcal{N}(0, H^{-1}) \text{ if } z^* = a$$

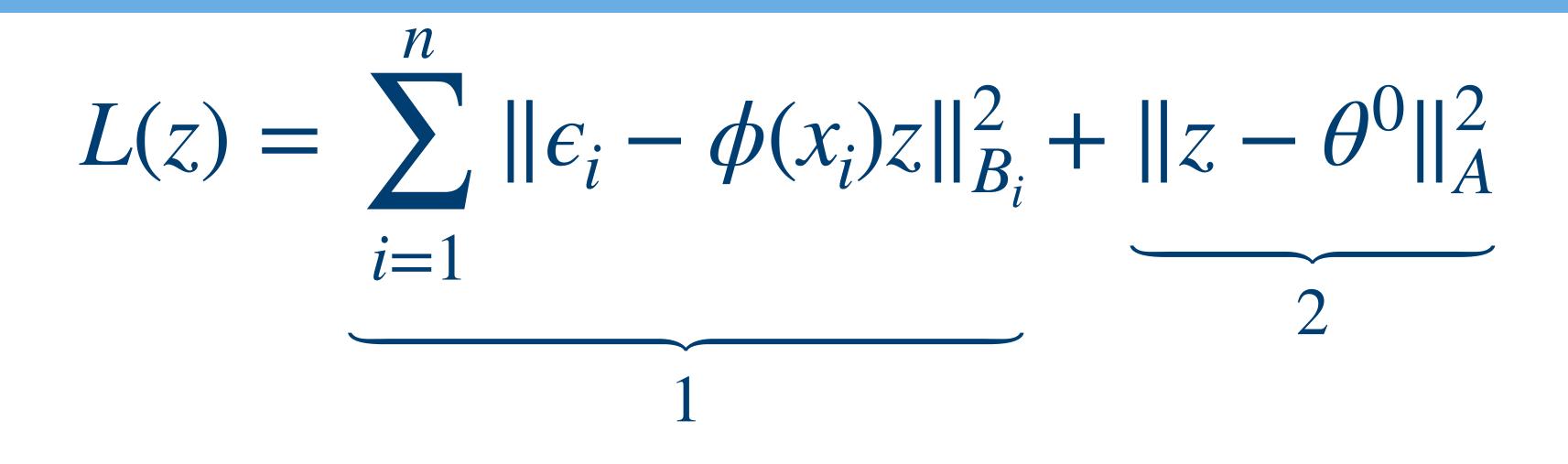
$$L(z) = \sum_{i=1}^n \|\epsilon_i - \phi(x_i)z\|_{B_i}^2$$

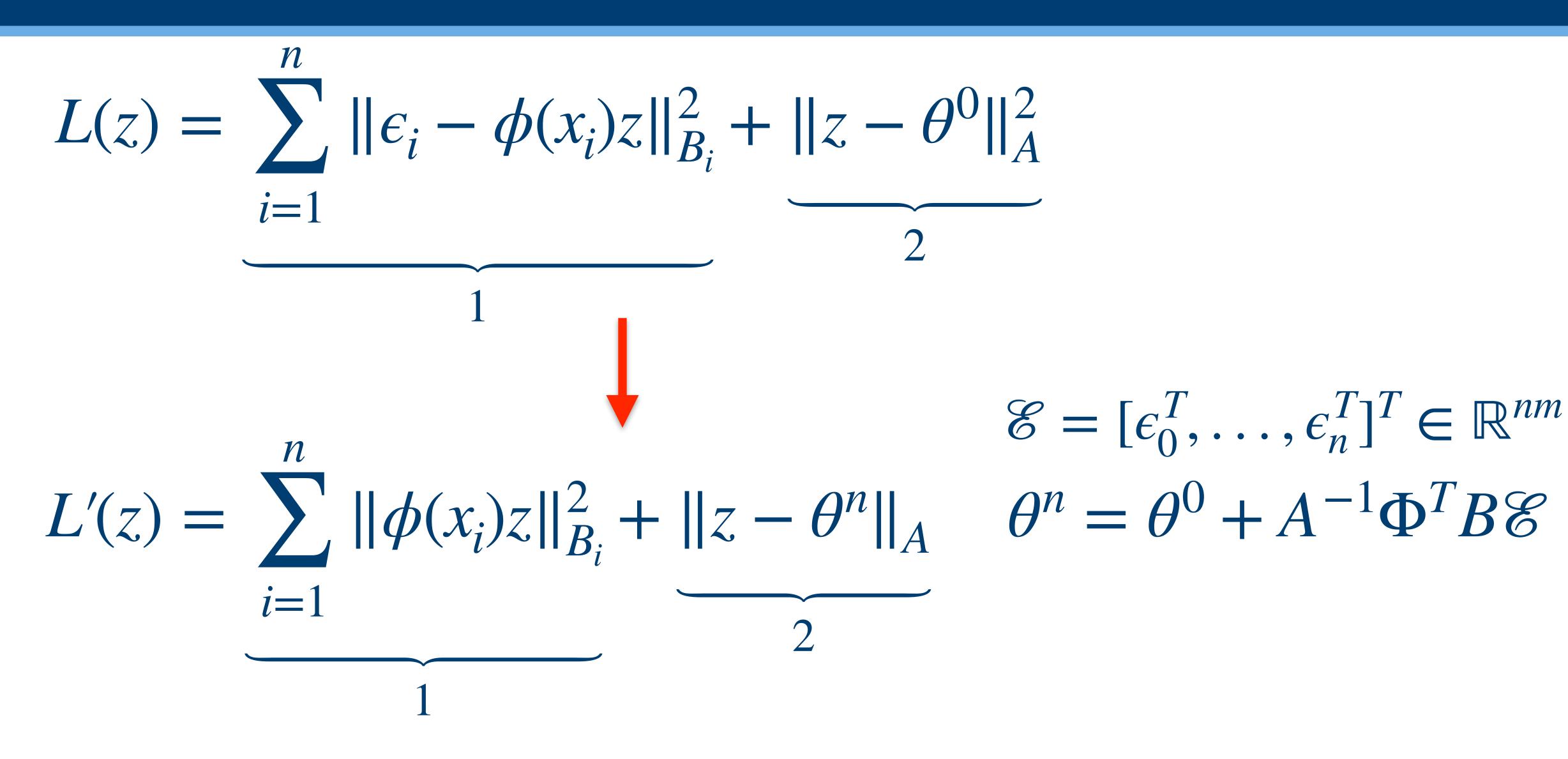
1. Noise-fit term.

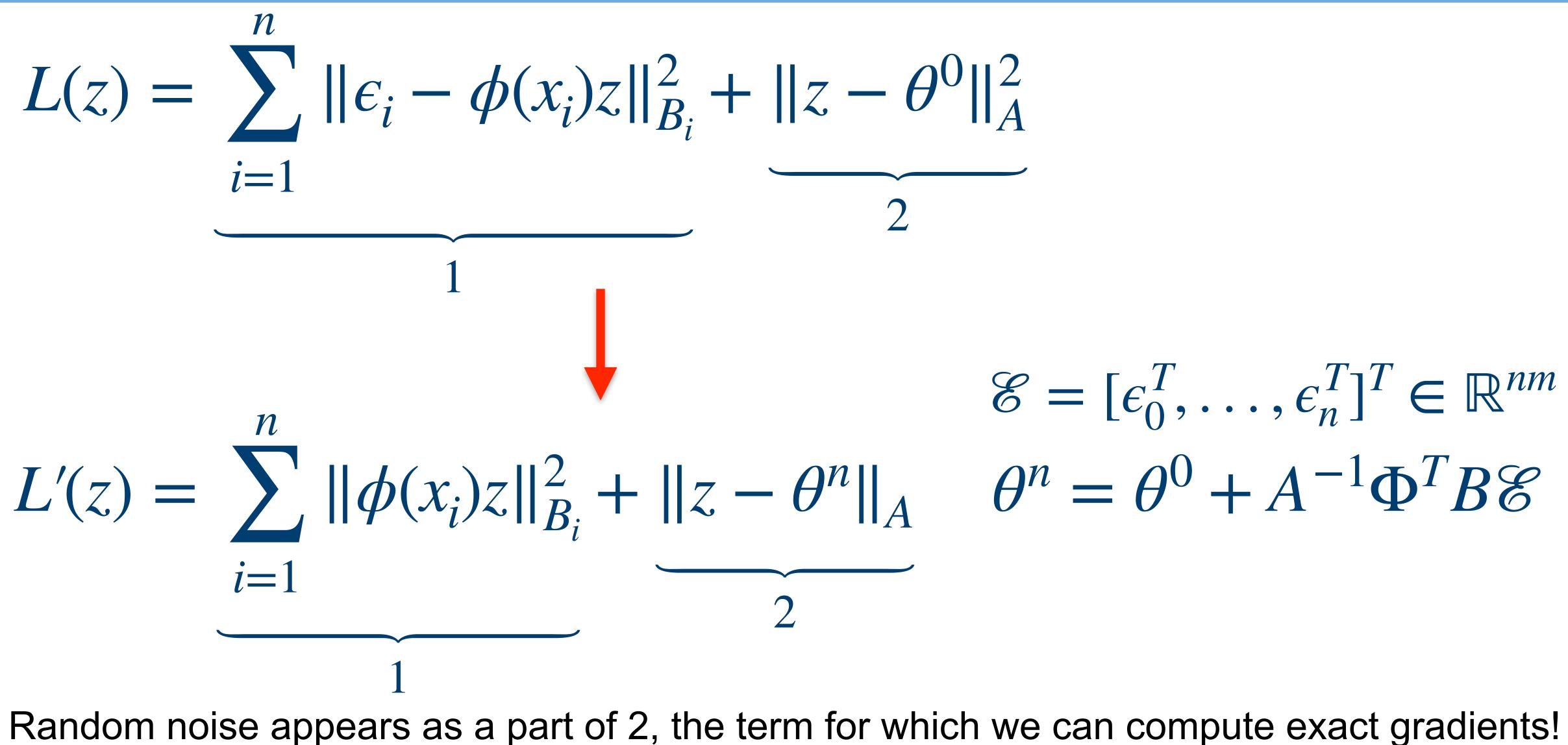
- - Very large variance when estimated stochastically.
- 2. Regularisation term.
 - •We can compute its gradient in closed form.

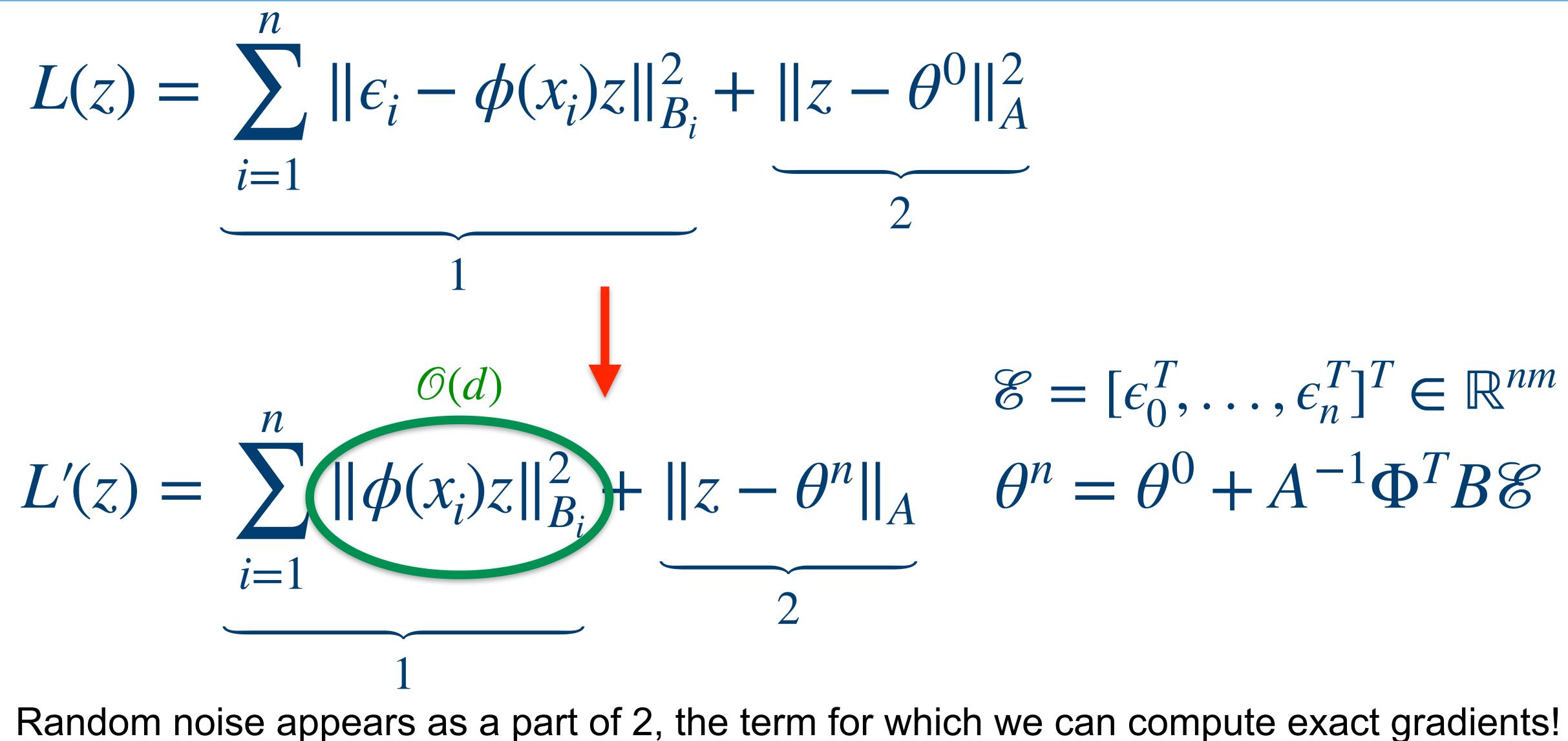
$\operatorname{rgmin}_{7} L(z)$ $\epsilon_i \sim \mathcal{N}(0, B_i^{-1})$ $+ \|z - \theta^0\|_A^2$ $\theta^0 \sim \mathcal{N}(0, A^{-1})$ 2

Depends on each observation's feature expansion so it needs to be minibatched.



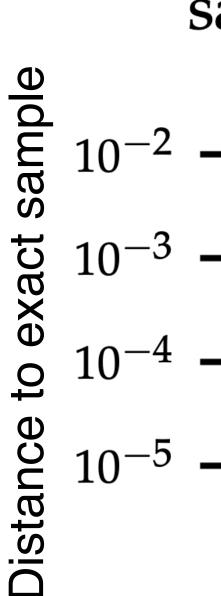




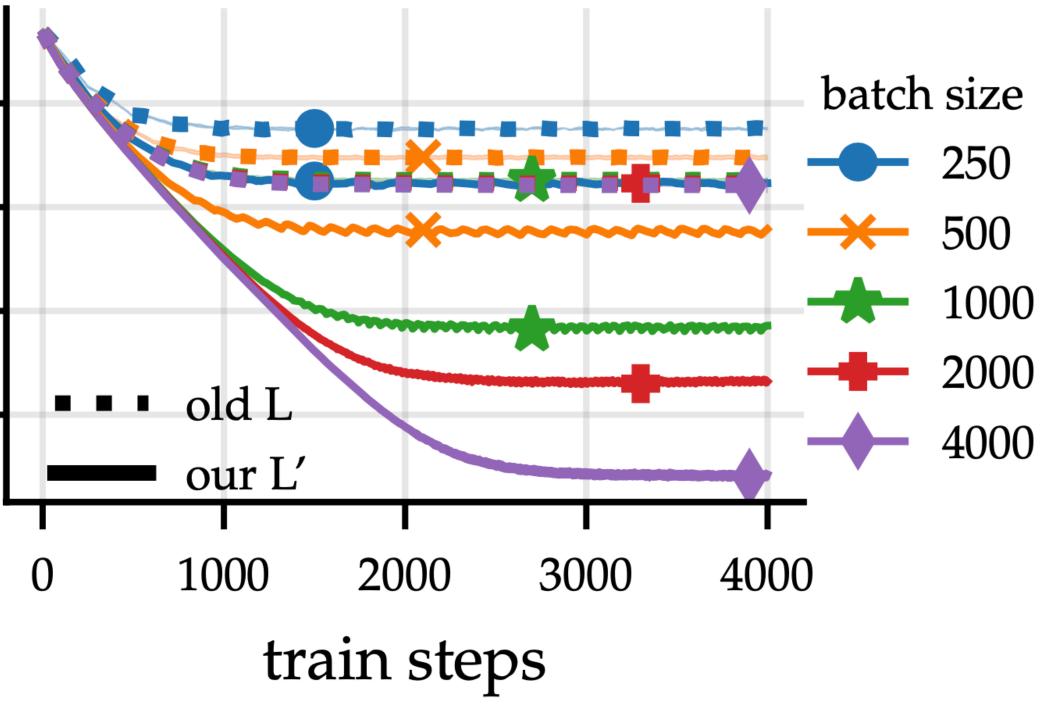


$$L(z) = \sum_{i=1}^{n} \|e_i - \phi(x_i)z\|_{B_i}^2 + \|z - \theta^0\|_A \qquad L'(z) = \sum_{i=1}^{n} \|\phi(x_i)z\|_{B_i}^2 + \|z - \theta^n\|_A$$

Both objectives are equal (L(z) = L'(z)) but their mini-batch estimators have different variances!

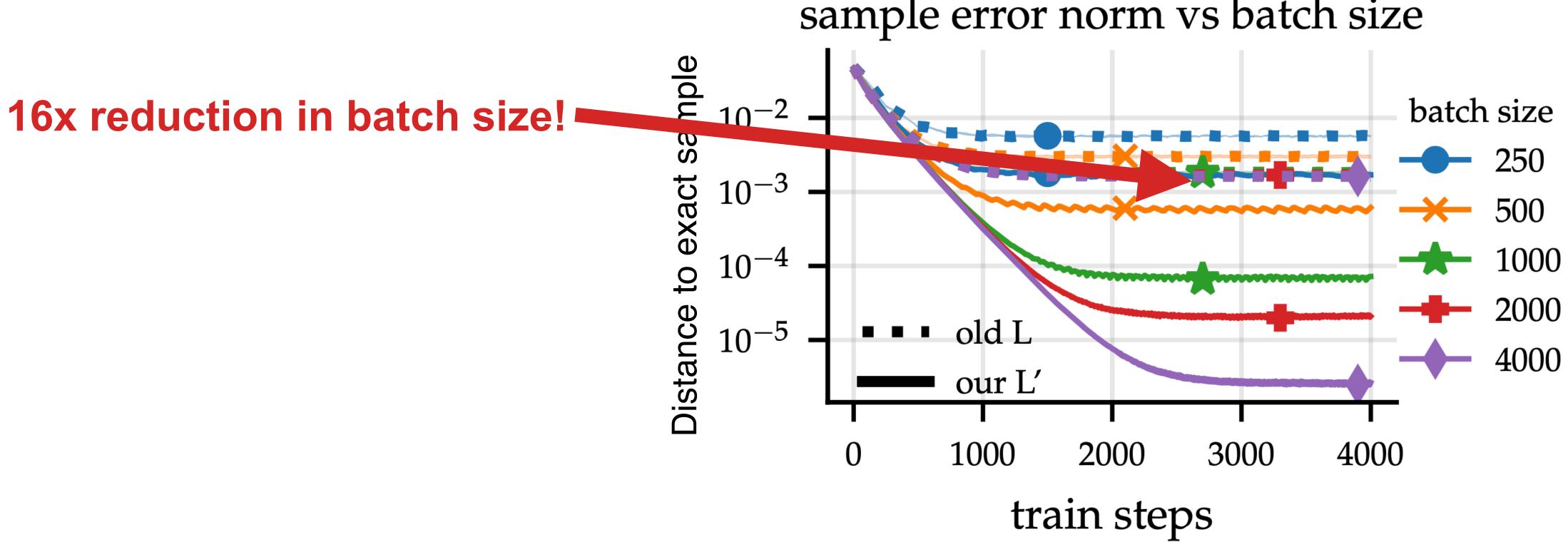


- sample error norm vs batch size



$$L(z) = \sum_{i=1}^{n} \|\epsilon_i - \phi(x_i)z\|_{B_i}^2 + \|z - \theta^0\|_A \qquad L'(z) = \sum_{i=1}^{n} \|\phi(x_i)z\|_{B_i}^2 + \|z - \theta^n\|_A$$

Both objectives are equal (L(z) = L'(z)) but their mini-batch estimators have different variances!



- sample error norm vs batch size

• $\log \det H^{-1}$ cannot be estimated from samples...

- $\log \det H^{-1}$ cannot be estimated from samples...
- MacKay proposed an alternative first order optimal update for $\alpha(assumeA = \alpha I)$

$$\alpha = \frac{\operatorname{Tr}(H^{-1} \mathbf{A})}{\|\bar{\theta}\|}$$

 $\frac{\Phi^T B \Phi}{\|^2} = \frac{\operatorname{Tr}(H^{-1} M)}{\|\bar{\theta}\|^2}$

- $\log \det H^{-1}$ cannot be estimated from samples...
- MacKay proposed an alternative first order optimal update for $\alpha(assumeA = \alpha I)$

$$\alpha = \frac{\operatorname{Tr}(H^{-1} \mathbf{C})}{\|\bar{\theta}\|}$$

• This *can be* estimated using only samples from the posterior

$$\operatorname{Tr}\left\{H^{-1}M\right\} = \operatorname{Tr}\left\{H^{\frac{-1}{2}}MH^{\frac{-1}{2}}\right\} = \mathbb{E}\left[z_{1}^{T}Mz_{1}\right] \approx \frac{1}{k}\sum_{j=1}^{k}z_{j}^{T}\Phi^{T} \operatorname{B}\Phi z_{j}$$

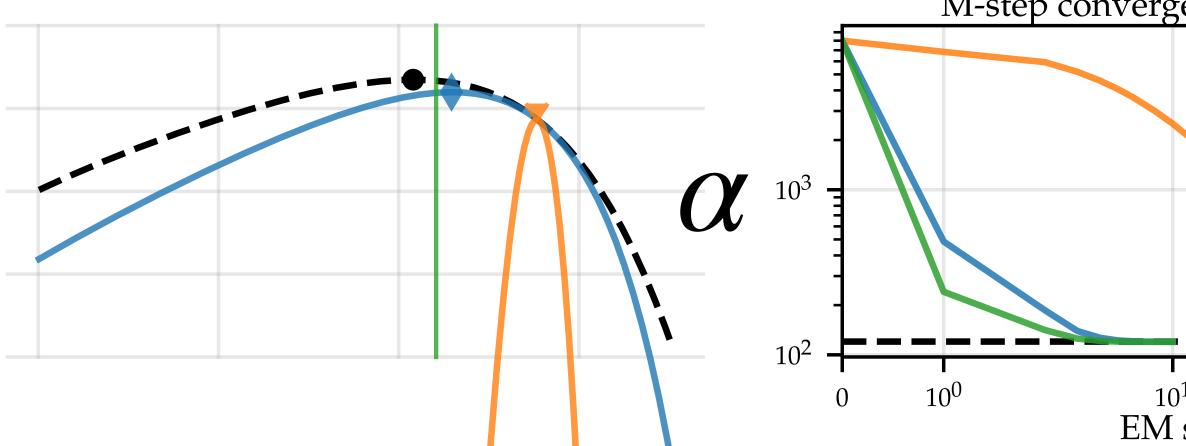
 $\frac{\Phi^T B \Phi}{\|e^2\|^2} = \frac{\operatorname{Tr}(H^{-1} M)}{\|\bar{\theta}\|^2}$

- $\log \det H^{-1}$ cannot be estimated from samples...
- MacKay proposed an alternative first order optimal update for $\alpha(assumeA = \alpha I)$

$$\alpha = \frac{\operatorname{Tr}(H^{-1} \mathbf{C})}{\|\bar{\theta}\|}$$

• This *can be* estimated using only samples from the posterior

$$\operatorname{Tr} \left\{ H^{-1}M \right\} = \operatorname{Tr} \left\{ H^{\frac{-1}{2}}MH^{\frac{-1}{2}} \right\} = \mathbb{E} \left[z_1^T M z_1 \right] \approx \frac{1}{k} \sum_{j=1}^k z_j^T \Phi^T \operatorname{B} \Phi z_j$$



 $\frac{\Phi^T B \Phi}{\|e^2\|^2} = \frac{\operatorname{Tr}(H^{-1} M)}{\|\bar{\theta}\|^2}$

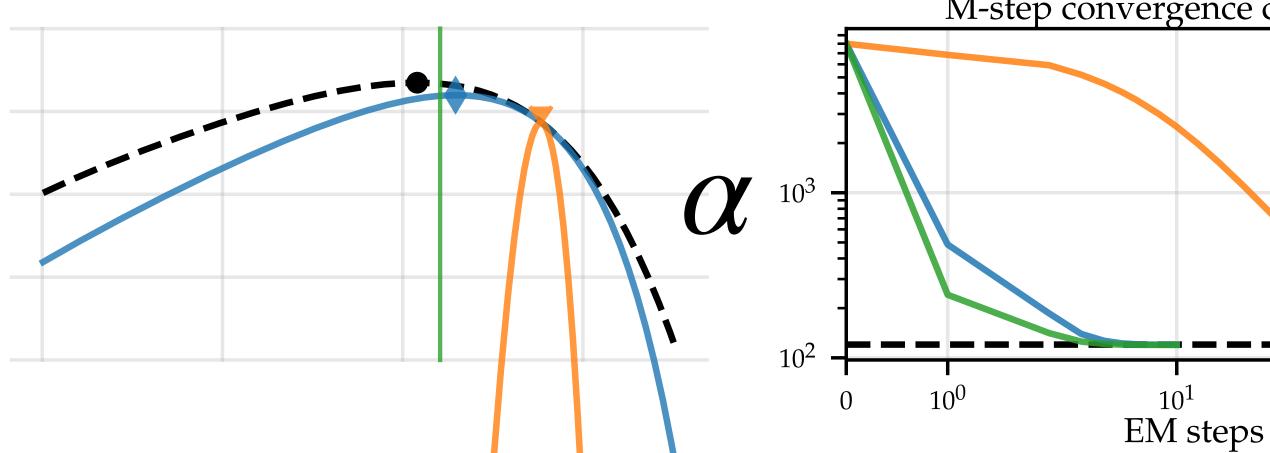
EIVI steps

- $\log \det H^{-1}$ cannot be estimated from samples...
- MacKay proposed an alternative first order optimal update for $\alpha(assumeA = \alpha I)$

$$\alpha = \frac{\operatorname{Tr}(H^{-1} \mathbf{C})}{\|\bar{\theta}\|}$$

• This *can be* estimated using only samples from the posterior

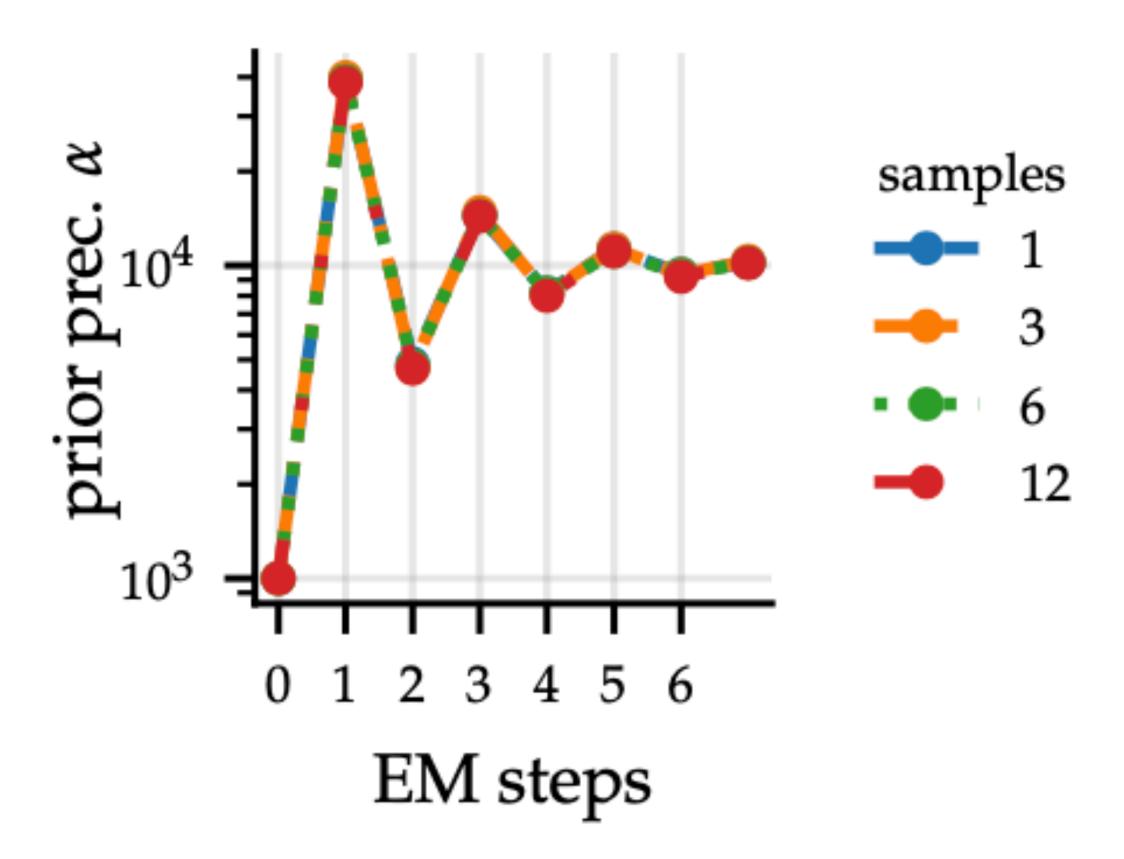
$$\operatorname{Tr}\left\{H^{-1}M\right\} = \operatorname{Tr}\left\{H^{-\frac{1}{2}}MH^{$$



 $\frac{\Phi^T B \Phi}{\|^2} = \frac{\operatorname{Tr}(H^{-1} M)}{\|\bar{\theta}\|^2}$ O(kdnm) $I^{\frac{-1}{2}} \bigg\} = \mathbb{E}\left[z_1^T M z_1\right] \approx \frac{1}{k} \sum_{j=1}^n z_j^T \Phi^T \ \mathbf{B} \Phi z_j$ M-step convergence comparison Exact evidence $\text{ELBO}(q, \lambda)$ Mackay update 10^{2} 10^{3}

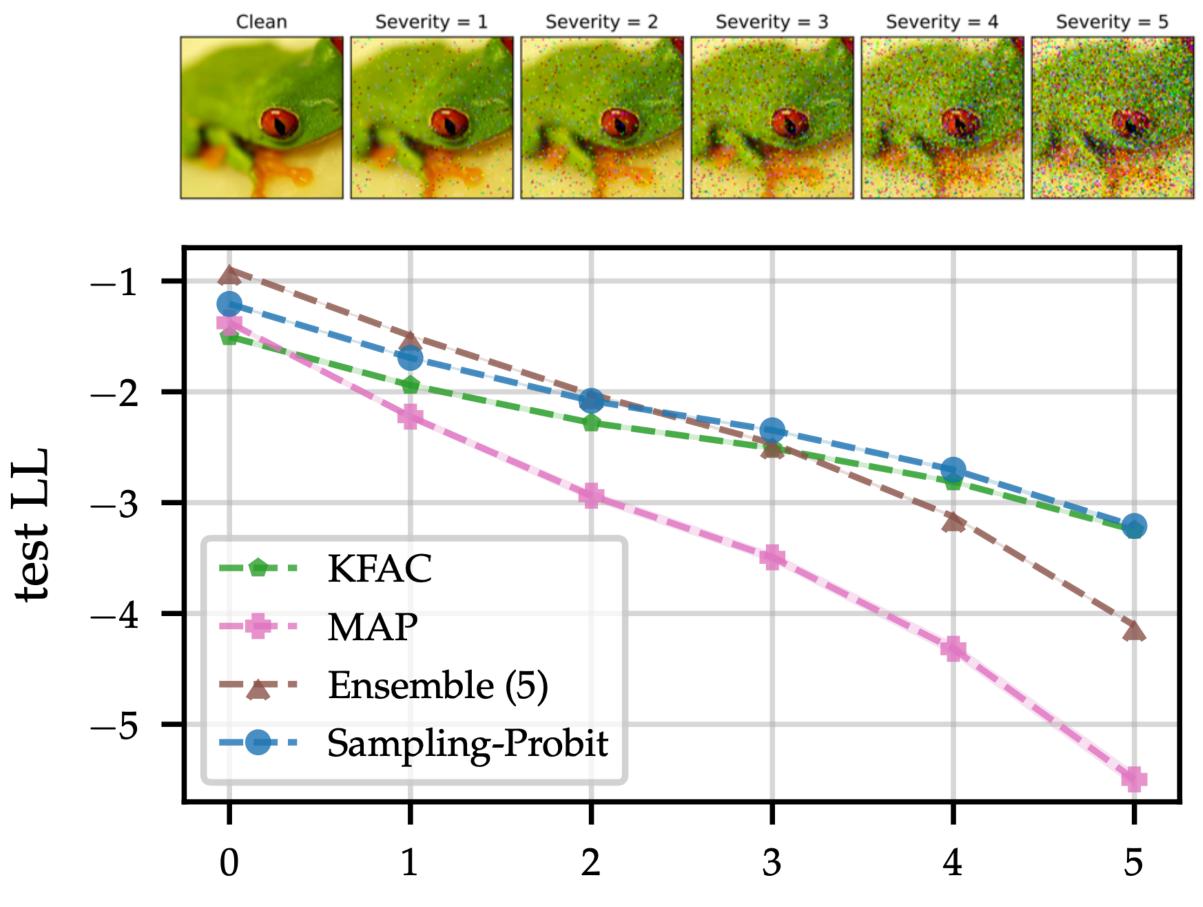
Stability of estimator: 1 sample is enough

ResNet-18 (d = 11M) on CIFAR-100 (nm = 5M)



Demonstration: Scalable Uncertainty Estimation in NNs

ResNet-18 (d = 11M) on CIFAR-100 (nm = 5M)



corruption severity

Thank you to my collaborators!

Javier Antorán

Riccardo Barbano

David Janz

Eric Nalisnick



José Miguel Hernández-Lobato

